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Preface

If you are an instructor, why should you choose this text-
book for your students? If you are a student, why should you
read this text? The material included in this text provides
an introduction to discrete mathematics and is intended for
first year students so that their later courses in mathematics
and/or computer science can be covered in more depth than
they could be without this foundational background. The text
is not intended to be a comprehensive collection of discrete
mathematics topics, but rather it ties selected topics to con-
cepts in computer science and it includes programming prob-
lems along with written exercises. Unlike the large, comprehen-
sive texts, this one can be covered in a semester. For computer
science students, there are programming exercises. For math
students without an interest in programming, there are plenty
of exercises of different levels to challenge them.

This text evolved over a 10-year period from notes for
our second semester freshman course for computer science stu-
dents. This course has included about two-thirds mathematics
and about one-third programming. Our students have found
immediate benefits in their next course, Data Structures and
Algorithms Analysis, as well as all other upper level courses.
You will find the style focused on the chosen topics; we make
no attempt at a complete coverage of those concepts. We chose
the topics with two goals in mind: to lay a strong mathemat-
ical foundation and to show that mathematics has immediate
application in computer science.

There is little, if any, controversy over whether or not
computer science students should study mathematics. The re-
sounding consensus is that mathematics is critical to the study
and practice of computer science. It is not so easy to gain
agreement among academicians and practitioners as to exactly
what areas of mathematics should be studied, how rigorous the
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presentation should be, and at what points in the curriculum
these ideas should be introduced.

Having been involved in the education of computer science
students and having been responsible for teaching students who
have taken a variety of mathematics courses, it is our belief
that it is wise to include some fundamental mathematics in
the first-year computer science curriculum. We believe that
there are enough topics for which students can see immediate
applications that it is worthwhile to make those topics a part
of the CS1 or CS2 course. This is not to say that students
would not need or benefit from other courses in mathematics
in addition to what they learn at this point. Rather, we believe
that students will enjoy and get more from later mathematics
courses because they have some background in basic ideas.

This book is not intended to be “the” math course for
computer science students. It is intended to help students un-
derstand the importance of mathematics and see its relevance
in a variety of applications. Indeed, most students will take
some sort of discrete mathematics course later in their careers.
The most immediate application for students is in analyzing
algorithms, something they will start doing in earnest in their
next course or two. To understand not only standard arith-
metic algorithms but also important algorithms in cryptology,
students must understand modular arithmetic and basic num-
ber theory. Concerns arise later that require a foundation in
mathematics.

Precision of expression is the key to carrying out the tasks
of both program specification and program correctness, and
mathematics provides the foundation for this precision. Math-
ematics teaches us to be exact in what we say and how we
think. It gives us the capability to express our ideas in such a
way as to avoid being misunderstood. The study of mathemat-
ics in general, regardless of specific content, promotes precision
of expression and attention to detail in reasoning. However, we
have chosen particular mathematical structures that have di-
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rect applications in computer science, hence addressing two
goals. First, we concern ourselves with the task of helping
students develop reasoning skills and exactness of expression.
Our second goal is to provide the fundamental mathematics
necessary for computer scientists.

Many exercises are included at the end of each chapter.
Some suggestions for programming problems have been in-
cluded. Most are easily embellished or altered to meet the
needs of the course. Some exercises and programming problems
have been starred. These indicate more challenging problems.

v Throughout the text you will find questions dis-
played like this. These are usually straightforward ques-
tions to be done as the student reads the text to check
if the material is understood.

Many people aided in the creation of this text. We’d like
to thank first our students who, over many semesters, pointed
out errors in the text (typographic and other) and offered sug-
gestions about exercises. We'd like to mention particularly
Rohit Bansal and Tony Fressola in this regard.

The editorial staff at Prentice-Hall has been particularly
helpful: Patricia Daly, Jeanne Audino and George Lobell. The
original manuscript has come a long way thanks to them.

And finally, we’d like to thank our spouses, Robin and Gil,
for their encouragement and support.

Any errors and typos are, of course, our responsibility. We
would like to hear from you if you find any. Please email us
with any errors you find or comments you have about the text.

Todd Feil
feil@denison.edu

Joan Krone
krone@denison.edu



Chapter 0
Introduction to Proofs

Throughout this text, we have provided proofs for many
of the theorems presented and have assigned some proofs in
the exercises. Proofs are an important part of mathematics.
But figuring out how to start a proof and how to proceed is
especially difficult for someone new to this activity. The pur-
pose of this chapter is to present a couple of proof techniques
used in the text, give some simple yet illustrative examples,
and supply some justification on why these techniques work.
There are many other techniques used besides the ones we in-
clude here; this is only a starting point. Please note that one
of the most important techniques, induction, is delayed until
later; we have devoted Chapter 4 to this powerful method.

A proof is a convincing argument. Outside of mathemat-
ics, what constitutes a proof differs from the high standards set
in mathematics. For example, if you wanted to prove that you
climbed Mount Everest, you might supply photos of yourself
taken on the summit or a letter from someone attesting to the
fact or even the results of a lie detector test. A skeptic might
protest that the photos and letters could be faked and the lie-
detector fooled and therefore the evidence offers no proof at
all. The courtroom is a source of many such “proofs.” Bear in
mind that mathematicians are the most skeptical of people, at
least when it pertains to mathematics.

One of the things that separates mathematics from other
intellectual endeavors is the preciseness of the claims made.
This requires a certain formality in the language, and the
proofs of these claims usually require the same formality. But
it’s true that not all proofs are formal. A goal of a proof is
to communicate to someone the argument being made. (That
someone may be yourself.) So the level of detail offered de-
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pends on the audience. If you are a professional mathematician
and you are communicating a proof to another mathematician
who is an expert in the field, a proof might be a few sentences
or paragraphs. The details that to an expert are well-known
or easily worked out are skipped. This “handwaving” is com-
mon. An expert needs the main ideas of the proof. A less
sophisticated audience needs more details to see the connec-
tions between steps in the proof. Indeed a very naive audience
would be so ignorant of the subject that a great deal of effort
would be necessary to make the terms intelligible. The real
test here would be to keep the audience’s interest maintained
over the days and weeks (or longer) required.

What differs in the level of sophistication in various ver-
sions of a proof is the size of the steps used. The audience must
believe that each step is justified. A mathematician believes
that every theorem can be reduced to a series of formal state-
ments, starting from a system of axioms, whose steps would
be so simple that they would be easy, even trivial, to justify.
However, the argument would be so long that the essence of
the proof would be lost.

At the other extreme, a proof given in conversation be-
tween experts would involve huge steps, leaving a great deal
of “detail” for the listener to justify. These steps, you could
argue, give only the essence of the proof.

Fortunately, over the years, mathematicians have devel-
oped a style that is a blend of natural language and formalism
that has evolved into a balance of preciseness and readability so
you believe it would be possible to reduce the proof to a series
of strictly formal statements (even though this would be a Her-
culean task). Your ability to read and produce proofs partly
involves learning this style. We start with a short introduction
to logic.

Propositional Logic

A proposition is a statement that has an associated truth



