Tell us about your PDF experience.

.NET Desktop Guide for Windows Forms

Learn about Windows Forms (WinForms), a graphical user interface for Windows and
.NET Framework.

WinForms for .NET Framework

OVERVIEW

Windows Forms overview

[@l GET STARTED
Get started with Windows Forms Designer

Create a WinForms app from the command-line

Controls

OVERVIEW
Developing your own controls

Developing controls

HOW-TO GUIDE
Add Controls to Windows Forms

Position controls on Windows Forms

(8] REFERENCE

Windows Forms Controls by Function

Events

OVERVIEW

Events in Windows Forms

Lol B | R R Y WA S

cvent nandiers In vwinaows rorms

{8} coNCEPT

Order in which events are raised

Input

OVERVIEW
About keyboard input

About mouse input

{&} cONCEPT
Keyboard events
Mouse events

Mouse pointers

HOW-TO GUIDE
Modify keyboard input
Detect modifier keyboard keys

Distinguish between single/double clicks

Getting Started with Windows Forms

Article » 02/06/2023

With Windows Forms, you can create powerful Windows-based applications. The
following topics describe in-depth how to harness the power of Windows Forms to
display data, handle user input, and deploy your applications easily and with enhanced
security.

In This Section

Windows Forms Overview

Contains an overview of Windows Forms and smart client applications.

Creating a New Windows Form
Contains links to topics that describe basic concepts for creating Windows Forms

applications.

Creating Event Handlers in Windows Forms
Contains links to topics that describe how to create Windows Forms event handlers.

Adjusting the Size and Scale of Windows Forms
Contains links to topics that show how to adjust the size and scale of Windows Forms.

Changing the Appearance of Windows Forms
Contains links to topics that show how to change the appearance of Windows Forms
applications.

Windows Forms Controls
Contains links to topics that describe and show how to use Windows Forms controls and

components.

User Input in Windows Forms
Contains links to topics that describe and show how to handle input from the user in

Windows Forms applications.

Dialog Boxes in Windows Forms
Contains links to topics that describe the different dialog boxes for use in Windows
Forms.

Windows Forms Data Binding
Contains links to topics that describe the Windows Forms data binding architecture and
how to use it in Windows Forms applications.

Windows Forms Security

Contains links to topics that describe how to build Windows Forms applications that
have enhanced security.

ClickOnce Deployment for Windows Forms
Contains links to topics that describe how to easily deploy Windows Forms applications.

How to: Access Keyed Collections in Windows Forms

Demonstrates how to access collections with keys rather than indexes.

Related Sections

Enhancing Windows Forms Applications
Contains links to topics that describe more advanced concepts for creating Windows
Forms applications.

Windows Forms overview

Article » 02/06/2023

The following overview discusses the advantages of smart client applications, the main
features of Windows Forms programming, and how you can use Windows Forms to

build smart clients that meet the needs of today's enterprises and end users.

Windows Forms and smart client apps

With Windows Forms you develop smart clients. Smart clients are graphically rich
applications that are easy to deploy and update, can work when they are connected to
or disconnected from the Internet, and can access resources on the local computer in a

more secure manner than traditional Windows-based applications.

Build rich, interactive user interfaces

Windows Forms is a smart client technology for the .NET Framework, a set of managed
libraries that simplify common application tasks such as reading and writing to the file
system. When you use a development environment like Visual Studio, you can create
Windows Forms smart-client applications that display information, request input from

users, and communicate with remote computers over a network.

In Windows Forms, a form is a visual surface on which you display information to the
user. You ordinarily build Windows Forms applications by adding controls to forms and
developing responses to user actions, such as mouse clicks or key presses. A control is a

discrete user interface (Ul) element that displays data or accepts data input.

When a user does something to your form or one of its controls, the action generates
an event. Your application reacts to these events by using code, and processes the
events when they occur. For more information, see Creating Event Handlers in Windows
Forms.

Windows Forms contains a variety of controls that you can add to forms: controls that
display text boxes, buttons, drop-down boxes, radio buttons, and even Web pages. For a
list of all the controls you can use on a form, see Controls to Use on Windows Forms. If
an existing control does not meet your needs, Windows Forms also supports creating
your own custom controls using the UserControl class.

Windows Forms has rich Ul controls that emulate features in high-end applications like

Microsoft Office. When you use the ToolStrip and MenuStrip control, you can create

toolbars and menus that contain text and images, display submenus, and host other

controls such as text boxes and combo boxes.

With the drag-and-drop Windows Forms Designer in Visual Studio, you can easily
create Windows Forms applications. Just select the controls with your cursor and add
them where you want on the form. The designer provides tools such as gridlines and
snap lines to take the hassle out of aligning controls. And whether you use Visual Studio
or compile at the command line, you can use the FlowlLayoutPanel, TableLayoutPanel
and SplitContainer controls to create advanced form layouts in less time.

Finally, if you must create your own custom Ul elements, the System.Drawing
namespace contains a large selection of classes to render lines, circles, and other shapes

directly on a form.

(O Note

Windows Forms controls are not designed to be marshaled across application
domains. For this reason, Microsoft does not support passing a Windows Forms
control across an AppDomain boundary, even though the Control base type of
MarshalByRefObject would seem to indicate that this is possible. Windows Forms
applications that have multiple application domains are supported as long as no
Windows Forms controls are passed across application domain boundaries.

Create forms and controls

For step-by-step information about how to use these features, see the following Help

topics.
Description Help topic
Using controls on forms How to: Add Controls to Windows Forms
Using the ToolStrip Control How to: Create a Basic ToolStrip with Standard Items Using
the Designer
Creating graphics with Getting Started with Graphics Programming

System.Drawing

Creating custom controls How to: Inherit from the UserControl Class

Display and manipulate data

Many applications must display data from a database, XML file, XML Web service, or
other data source. Windows Forms provides a flexible control that is named the
DataGridView control for displaying such tabular data in a traditional row and column
format, so that every piece of data occupies its own cell. When you use DataGridView,
you can customize the appearance of individual cells, lock arbitrary rows and columns in

place, and display complex controls inside cells, among other features.

Connecting to data sources over a network is a simple task with Windows Forms smart
clients. The BindingSource component represents a connection to a data source, and
exposes methods for binding data to controls, navigating to the previous and next
records, editing records, and saving changes back to the original source. The
BindingNavigator control provides a simple interface over the BindingSource

component for users to navigate between records.

You can create data-bound controls easily by using the Data Sources window. The
window displays data sources such as databases, Web services, and objects in your
project. You can create data-bound controls by dragging items from this window onto
forms in your project. You can also data-bind existing controls to data by dragging

objects from the Data Sources window onto existing controls.

Another type of data binding you can manage in Windows Forms is settings. Most smart
client applications must retain some information about their run-time state, such as the
last-known size of forms, and retain user preference data, such as default locations for
saved files. The Application Settings feature addresses these requirements by providing
an easy way to store both types of settings on the client computer. After you define
these settings by using either Visual Studio or a code editor, the settings are persisted as

XML and automatically read back into memory at run time.

Display and manipulate data

For step-by-step information about how to use these features, see the following Help
topics.
Description Help topic

Using the BindingSource How to: Bind Windows Forms Controls with the BindingSource
component Component Using the Designer

Working with ADO.NET How to: Sort and Filter ADO.NET Data with the Windows Forms
data sources BindingSource Component

Using the Data Sources Bind Windows Forms controls to data in Visual Studio
window

Description Help topic

Using application settings How to: Create Application Settings

Deploy apps to client computers

After you have written your application, you must send the application to your users so
that they can install and run it on their own client computers. When you use the
ClickOnce technology, you can deploy your applications from within Visual Studio by
using just a few clicks, and provide your users with a URL pointing to your application
on the Web. ClickOnce manages all the elements and dependencies in your application,

and ensures that the application is correctly installed on the client computer.

ClickOnce applications can be configured to run only when the user is connected to the
network, or to run both online and offline. When you specify that an application should
support offline operation, ClickOnce adds a link to your application in the user's Start
menu. The user can then open the application without using the URL.

When you update your application, you publish a new deployment manifest and a new
copy of your application to your Web server. ClickOnce will detect that there is an
update available and upgrade the user's installation; no custom programming is
required to update old assemblies.

Deploy ClickOnce apps

For a full introduction to ClickOnce, see ClickOnce Security and Deployment. For step-
by-step information about how to use these features, see the following Help topics,

Description Help topic
Deploying an application by using How to: Publish a ClickOnce Application using the
ClickOnce Publish Wizard

Walkthrough: Manually Deploying a ClickOnce

Application
Updating a ClickOnce deployment How to: Manage Updates for a ClickOnce Application
Managing security with ClickOnce How to: Enable ClickOnce Security Settings

Other controls and features

There are many other features in Windows Forms that make implementing common
tasks fast and easy, such as support for creating dialog boxes, printing, adding Help and
documentation, and localizing your application to multiple languages. Additionally,
Windows Forms relies on the robust security system of the NET Framework. With this
system, you can release more secure applications to your customers.

Implement other controls and features

For step-by-step information about how to use these features, see the following Help

topics.
Description Help topic
Printing the contents of a form How to: Print Graphics in Windows Forms
How to: Print a Multi-Page Text File in Windows
Forms
Learn more about Windows Forms Security in Windows Forms Overview
security
See also

e Getting Started with Windows Forms
e Creating a New Windows Form

e ToolStrip Control Overview

e DataGridView Control Overview

e BindingSource Component Overview
e Application Settings Overview

e ClickOnce Security and Deployment

Creating a New Windows Form

Article » 02/06/2023

This topic contains links to topics that describe how to create your first Windows Forms
application. Also, the topics in this section introduce some of the basic vocabulary and
guidelines that you should understand when you start to create a Windows Forms
application. To learn more about Windows Forms applications, the controls you can use
on them, events and handling events, and how to handle input from the user, see the

related topic list.

In This Section

Windows Forms Coordinates
Describes client and screen coordinates.

How to: Create a Windows Forms Application from the Command Line

Describes how to create a basic Windows Form and compile it from the command line.

Reference

Form
Describes this class and contains links to all its members.

Control
Describes this class and contains links to all its members.

Related Sections

Handling User Input
Contains links to topics that discuss user input and how to handle it in Windows Forms

applications.

Creating Event Handlers in Windows Forms
Contains links to topics that describe how to handle events in Windows Forms
applications.

Changing the Appearance of Windows Forms
Contains links to topics that show how to change the appearance of Windows Forms
applications.

