


WIRELESS SENSOR NETWORK DESIGNS

Wireless Sensor Network Designs

Anna Hać University of Hawaii at Manoa, Honolulu, USA

Wireless Sensor Network Designs

Wireless Sensor Network Designs

Anna Hać University of Hawaii at Manoa, Honolulu, USA

Copyright © 2003

John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England

Telephone (+44) 1243 779777

Email (for orders and customer service enquiries): cs-books@wiley.co.uk Visit our Home Page on www.wileyeurope.com or www.wiley.com

All Rights Reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except under the terms of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London W1T 4LP, UK, without the permission in writing of the Publisher. Requests to the Publisher should be addressed to the Permissions Department, John Wiley & Sons Ltd, The Atrium, Southern Gate, Chichester, West Sussex PO19 8SQ, England, or emailed to permreq@wiley.co.uk, or faxed to (+44) 1243 770620.

This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. It is sold on the understanding that the Publisher is not engaged in rendering professional services. If professional advice or other expert assistance is required, the services of a competent professional should be sought.

Other Wiley Editorial Offices

John Wiley & Sons Inc., 111 River Street, Hoboken, NJ 07030, USA

Jossey-Bass, 989 Market Street, San Francisco, CA 94103-1741, USA

Wiley-VCH Verlag GmbH, Boschstr. 12, D-69469 Weinheim, Germany

John Wiley & Sons Australia Ltd, 33 Park Road, Milton, Queensland 4064, Australia

John Wiley & Sons (Asia) Pte Ltd, 2 Clementi Loop #02-01, Jin Xing Distripark, Singapore 129809

John Wiley & Sons Canada Ltd, 22 Worcester Road, Etobicoke, Ontario, Canada M9W 1L1

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic books.

Library of Congress Cataloging-in-Publication Data

Hać, Anna.

Wireless sensor network designs / Anna Hac.

p. cm.

Includes bibliographical references and index.

ISBN 0-470-86736-1

1. Sensor networks. 2. Wireless LANs. I. Title.

TK7872.D48.H33 2003 621.382'1 – dc22

2003057612

British Library Cataloguing in Publication Data

A catalogue record for this book is available from the British Library

ISBN 0-470-86736-1

Typeset in 11/13pt Palatino by Laserwords Private Limited, Chennai, India Printed and bound in Great Britain by TJ International, Padstow, Cornwall This book is printed on acid-free paper responsibly manufactured from sustainable forestry in which at least two trees are planted for each one used for paper production.

Contents

Preface	ix
About the Author	xv
1 Networked Embedded Systems	1
1.1. Introduction	1
1.2. Object-Oriented Design	3
1.3. Design Integration	4
1.4. Design Optimization	6
1.5. Co-design and Reconfiguration	9
1.6. Java-Driven Co-design and Prototyping	12
1.6.1. Java-Based Co-design	13
1.6.2. Run-Time Management	15
1.6.3. Embedded Systems Platform	17
1.7. Hardware and Software Prototyping	20
1.8. Multiple Application Support	23
1.8.1. FPGA-Based System Architecture	25
1.9. Summary	27
Problems	28
Learning Objectives	28
Practice Problems	29
Practice Problem Solutions	29
2 Smart Sensor Networks	31
2.1. Introduction	31
2.2. Vibration Sensors	32
2.3. Smart Sensor Application to Condition Based Maintenance	34
2.4. Smart Transducer Networking	42
2.5. Controller Area Network	46
2.6. Summary	58

<u>vi</u> CONTENTS

	Problems	60
	Learning Objectives	60
	Practice Problems	60
	Practice Problem Solutions	60
3	Power-Aware Wireless Sensor Networks	63
	3.1. Introduction	63
	3.2. Distributed Power-Aware Microsensor Networks	65
	3.3. Dynamic Voltage Scaling Techniques	71
	3.4. Operating System for Energy Scalable Wireless Sensor Networks	75
	3.5. Dynamic Power Management in Wireless Sensor Networks	79
	3.6. Energy-Efficient Communication	81
	3.7. Power Awareness of VLSI Systems	85
	3.8. Summary	95
	Problems	97
	Learning Objectives	97
	Practice Problems	97
	Practice Problem Solutions	98
4	Routing in Wireless Sensor Networks	101
_	4.1. Introduction	101
	4.2. Energy-Aware Routing for Sensor Networks	102
	4.3. Altruists or Friendly Neighbors in the Pico Radio Sensor Network	109
	4.3.1. Energy-Aware Routing	111
	4.3.2. Altruists or Friendly Neighbors	114
	4.3.3. Analysis of Energy Aware and Altruists Routing Schemes	116
	4.4. Aggregate Queries in Sensor Networks	120
	4.4.1. Aggregation Techniques	125
	4.4.2. Grouping	133
	4.5. Summary	135
	Problems	136
	Learning Objectives	136
	Practice Problems	137
	Practice Problem Solutions	137
5	Distributed Sensor Networks	141
	5.1. Introduction	141
	5.2. Bluetooth in the Distributed Sensor Network	142
	5.2.1. Bluetooth Components and Devices	144
	5.2.2. Bluetooth Communication and Networking	146
	5.2.3. Different Technologies	151
	5.3. Mobile Networking for Smart-Dust	154
	5.3.1. Smart-Dust Technology	154
	5.3.2. Communication and Networking	159
	5.4. Summary	162
	Problems	163
	Learning Objectives	163

<u>CONTENTS</u> vii

	Practice Problems	163
	Practice Problem Solutions	163
	ustering Techniques in Wireless Sensor Networks	165
	1. Introduction	165
6.	.2. Topology Discovery and Clusters in Sensor Networks	166
	6.2.1. Topology Discovery Algorithm	169
	6.2.2. Clusters in Sensor Networks	171
	6.2.3. Applications of Topology Discovery	177
	3. Adaptive Clustering with Deterministic Cluster-Head Selection	181
0.	4. Sensor Clusters' Performance	185
_	6.4.1. Distributed Sensor Processing	187
0.	.5. Power-Aware Functions in Wireless Sensor Networks	192
6	6.5.1. Power Aware Software	196 198
0.	.6. Efficient Flooding with Passive Clustering	203
6	6.6.1. Passive Clustering	203
0.	7. Summary Problems	207
	Learning Objectives	208
	Practice Problems	200
	Practice Problem Solutions	209
	1 factice 1 foblem Solutions	207
7 Se	curity Protocols for Wireless Sensor Networks	213
	1. Introduction	213
7.	.2. Security Protocols in Sensor Networks	214
	7.2.1. Sensor Network Security Requirements	216
	7.2.2. Authenticated Broadcast	219
	7.2.3. Applications	223
7.	.3. Communication Security in Sensor Networks	225
7.	.4. Summary	230
	Problems	230
	Learning Objectives	230
	Practice Problems	231
	Practice Problem Solutions	231
8 Or	perating Systems for Embedded Applications	235
	1. Introduction	235
	.2. The Inferno Operating System	236
	3. The Pebble Component-Based Operating System	242
0.	8.3.1. Protection Domains and Portals	246
	8.3.2. Scheduling and Synchronization	250
	8.3.3. Implementation	253
	8.3.4. Embedded Applications	258
8	4. Embedded Operating System Energy Analysis	264
	5. Summary	270
٥.	Problems	271
	Learning Objectives	271